Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Opt Lett ; 48(17): 4657-4660, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37656579

RESUMO

Phase difference sensing technology (PDST) is employed for topography measurement, and two interference structures are proposed to achieve upper-limit adjustment and high resolution in the measurement range: a dual-wavelength system with a single Fabry-Perot (FP) cavity and a single-wavelength system with dual FP cavities. The phase difference between the two interference signals is determined by an elliptic fitting algorithm (EFA), and this change in phase difference is utilized to characterize the step height. Experimental results indicate that the measurement upper-limit can be adjusted to either 410 µm, 187 µm, or 108 µm by varying the wavelength difference in the dual-wavelength system, which gives a measurement error of 2.96%. In contrast, while offering a measurement resolution of 3.47 nm, the single-wavelength system exhibits a measurement error of 5.38%. The proposed method is capable of satisfying the measurement requirements during micro-electromechanical system (MEMS) processing with proficiency.

2.
Opt Lett ; 48(7): 1690-1693, 2023 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-37221742

RESUMO

An improved ellipse-fitting algorithm phase demodulation (EFAPD) technique is proposed to reduce the influence of light source intensity noise on a system. In the original EFAPD, the sum of the intensities of coherent light (ICLS) is an important part of the interference signal noise, which makes the demodulation results suffer. The improved EFAPD corrects the ICLS and fringe contrast quantity of the interference signal by an ellipse-fitting algorithm, and then calculates the ICLS based on the structure of pull-cone 3 × 3 coupler, so as to remove it in the algorithm. Experimental results show that the noise of the improved EFAPD system is significantly reduced compared with that of the original EFAPD, with a maximum reduction of 35.57 dB. The improved EFAPD makes up for the deficiency of the original EFAPD in suppressing light source intensity noise, and promotes the application and popularization of EFAPD.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...